姓 名 | 杨靖霞 (Jingxia Yang) | |
办公地点 | 4号实训楼4405室 | |
办公电话 | ||
电子邮箱 | jxyang@sues.edu.cn | |
毕业学校 | 天津大学/维也纳理工大学 | |
研究方向 1. 无极材料合成,形貌控制 2. 溶胶-凝胶法应用 3. 材料在催化、涂层、超级电容器中的应用 | ||
个人简历 2022 上海工程技术大学 教授 2016-2021 上海工程技术大学 副教授 2011-2015 维也纳理工大学 博士后&助理研究员 (2012-2014 辅修维也纳理工大学理学博士学位) 2010-2012 浙江大学 博士后&助理研究员 2001-2010 天津大学 本硕博,获工学博士 (2008-2009 维也纳理工大学 访问学生) 承担项目 [1] 企业项目;编号:22HG-0005(锂电池气凝胶隔热材料研发);2022.3-2024.12;主持 [2]上海市教委青年教师培养项目;编号:ZZGCD16019(微波-超声法制备石墨烯改性CeO2及其亚胺催化的基础研究);2017.06-2019.06;主持 [3]国家自然科学基金青年科学基金项目;编号:21601121(石墨烯修饰TiO2-SnO2混杂光阳极的分子层面结构设计及制备研究); 2017.01-2019.12;主持 [4]上海市科委人才项目;编号:QD2016037;2016.1-2018.12;主持 [5]上海工程技术大学启动基金;编号:2016-21(TiO2-SnO2混杂光阳极的分子层面结构设计及制备研究);2016.7-2018.6;主持 荣誉奖项 2016 上海市QNDF 2018 泉州市高层次人才 2019 上海工程技术大学三八红旗手 | ||
代表性论著(论文、著作、专利) [1] X. Xu, J. Yang*, Y. Hong, J. Wang, Nitrate Precursor Driven High Performance Ni/Co-MOF Nanosheets for Supercapacitors, ACS Applied Nano Materials, 5 (2022) 8382-8392. [2] X. Chang, H. Ding, J. Yang*, CeO2 Structure Adjustment by H2O via the Microwave–Ultrasonic Method and Its Application in Imine Catalysis, Frontiers in Chemistry, 10 (2022) DOI:10.3389/fchem.2022.916092. [3] J. Yang, N. Yigit, J. Möller, G. Rupprechter, Co3O4-CeO2 nanocomposites for Low Temperature CO Oxidation, Chem. - Eur. J., 27 (2021) 16947. [4] X. Li, J. Yang*, J. Wang, X. Chang, J. Xu, Z. Wu, A stable super-amphiphilic surface created from superhydrophobic silica/epoxy coating by low-temperature plasma-treatment, Surface Engineering, 37 (2021) 1282-1289. [5] Y. Hong, J. Yang*, W. Choi, J. Wang, J. Xu, B-Doped g-C3N4 Quantum Dots-Modified Ni(OH)2 Nanoflowers as an Efficient and Stable Electrode for Supercapacitors, ACS Appl. Energy Mater., 4 (2021) 1496-1504. [6] L. Guo, J. Yang*, H. Zhang, R. Wang, J. Xu, J. Wang, Highly Enhanced Visible-light Photocatalytic Activity via a Novel Surface structure of CeO2/g-C3N4 toward Removals of 2,4-dichlorophenol and Cr(VI), ChemCatChem, 13 (2021) 2034-2044. [7] Y. Shen, J. Yang*, S. Wang, L. Jing, H. Zheng, Y. Du, B. Zou, X. Lei, J. Xu, Size Influences of SiO2-graphene Barrier on the Corrosion Resistance of Epoxy-Acrylic Waterborne Coating, Int. J. Electrochem. Sci., 16 (2021) 151018. [8] J. Yang*, J. Zhang, B. Zou, H. Zhang, J. Wang, U. Schubert, Y. Rui, Black SnO2-TiO2 Nanocomposites with High-dispersion for Photocatalytic and Photovoltalic Applications, ACS Appl. Nano Mater., 3 (2020) 4265–4273. [9] J. Yang, S. Peng, Y. Shi, S. Ma, H. Ding, G. Rupprechter, J. Wang, Fast Visual Evaluation of the Catalytic Activity of CeO2: Simple Colorimetric Assay Using 3,3',5,5'-tetramethylbenzidine as Indicator, J. Catal., 389 (2020) 71-77. [10]J. Yang, H. Ding, J. Wang, N. Yigit, J. Xu, G. Rupprechter, M. Zhang, Z. Li, Energy-Guided Shape Control Towards Highly Active CeO2, Top. Catal., 63 (2020) 1743–1753. [11]Y. Shi, M. Zhang, L. Liu, X. Bai, H. Yuan, H. Alsulami, M.A. Kutbi, J. Yang*, Fabrication of hierarchical MnxOy@SiO2@C-Ni nanowires for enhanced catalytic performance, Colloids Surf., A, 586 (2020) 124211. [12]S. Peng, J. Yang*, L. Guo, J. Wang, J. Zhao, J. Xu, Z. Li, Shape-Dependent CeO2@BiOI for Degradation of Aqueous Cr(VI), Adv. Mater. Interfaces, 7 (2020) 1901879. [13] H. Li, J. Wang, J. Yang*, J. Zhang, H. Ding, Large CeO2 nanoflakes modified by graphene as barriers in waterborne acrylic coatings and the improved anticorrosion performance, Prog. Org. Coat., 143 (2020) 105607. [14]L.-Y. Chen, F.-F. Xu, J. Zhang, H. Ding, J. Yang*, Structure design of CeO2-MoS2 composites and their efficient activity for imine synthesis, Appl. Nanosci., 10 (2020) 233-241. [15]B. Zou, X. Chang, J. Yang*, S. Wang, J. Xu, S. Wang, S. Samukawa, L. Wang, Plasma treated h-BN nanoflakes as barriers to enhance anticorrosion of acrylic coating on steel, Prog. Org. Coat., 133 (2019) 139-144. [16] T. Xu, H. Li, J. Song, G. Wang, S. Samukawa, X. Chang, J. Yang*, Enhanced Corrosion Resistance of Silicone-Modified Epoxy Coatings by Surface-Wave Plasma Treatment, Int. J. Electrochem. Sci., 14 (2019) 5051-5063. [17]J. Yang, H. Ding, Z. Zhu, Q. Wang, J. Wang, J. Xu, X. Chang, Surface modification of CeO2 nanoflakes by low temperature plasma treatment to enhance imine yield: influences of different plasma atmospheres, Appl. Surf. Sci., 454 (2018) 173-180. [18]L. Guo, L. Jing, Y. Liu, B. Zou, S. Hua, J. Zhang, D. Yu, S. Wang, L. Wang, J. Yang*, Enhanced Dispersion of Graphene in Epoxy-Acrylic Waterborne Anticorrosion Coating: Bifunctional Ligands Linking Graphene to SiO2, Int. J. Electrochem. Sci., 13 (2018) 11867-11881. [19]H. Ding, J. Yang*, S. Ma, N. Yigit, J. Xu, G. Rupprechter, J. Wang, Large Dimensional CeO2 Nanoflakes by Microwave-Assisted Synthesis: Lamellar Nano-Channels and Surface Oxygen Vacancies Promote Catalytic Activity, ChemCatChem, 10 (2018) 4100-4108. [20]J. Zhang, J. Yang*, J. Wang, H. Ding, Q. Liu, U. Schubert, Y. Rui, J. Xu, Surface oxygen vacancies dominated CeO2 as efficient catalyst for imine synthesis: Influences of different cerium precursors, Mol. Catal., 443 (2017) 131-138. [21]J. Yang, J. Ofner, B. Lendl, U. Schubert, In situ formation of reduced graphene oxide structures in ceria by combined sol–gel and solvothermal processing, Beilstein J. Nanotechnol., 7 (2016) 1815–1821. |