讲座:On the independence of linear and quadratic forms in matrix normal distribution and Wishart distribution

发布时间:2024-06-17浏览次数:10

讲座题目

On the independence of linear and quadratic forms in matrix normal distribution and Wishart distribution

主办单位

数理与统计学院

协办单位

应用统计系

讲座时间

62210:00-11:00

主讲人

Jiyuan Tao

讲座地点

行政楼1308

主讲人简介

Jiyuan Tao,博士,美国马里兰洛约拉大学(Loyola University Maryland)数学与统计系教授。毕业于美国马里兰大学, 巴尔的摩(University of MarylandBaltimore County)应用数学专业。主要研究兴趣:应用分析、有限维优化和欧几里德若当代数。研究成果发表在Mathematical Programming, Mathematics of Operations Research(最优化领域的顶尖杂志),Optimization  Methods and Software, Journal of Optimization Theory and Applications,  Journal of Global Optimization, Linear and Multilinear AlgebraLinear Algebra and its Applications等国际权威杂志。

讲座内容简介

 It  is well-known that the Craig-Sakamoto theorem establishes the  independence of two quadratic forms in normal variates. Replacing the  random normal vectors by the random normal matrices and Wishart  variates, in this talk, we present interconnections between the  independence of linear forms, quadratic forms, trace forms in matrix  normal distribution and Wishart distribution. We show that the  Craig-Sakamoto theorem still establishes the independence of two  quadratic forms in matrix normal distribution, but it does not establish  the independence of two quadratic forms in Wishart variates.