Biographical Information (education background, working experience) 2020/01-now Associate professor, Department of polymer materials and engineering, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 2014/06-2019/12 Lecturer, Department of polymer materials and engineering, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science 2012/01-2014/06 Postdoctoral, Shanghai Jiaotong University, School of Biomedical Engineering, Co-Tutor: GU Hongchen 2009/10-2011/03 Joint Ph.D. student, Department of chemistry, University of Massachusetts, USA, tutors: Paul L. Dubin, Vincent M. Rotello 2006/09-2011/11 Ph.D., East China University of Science and Technology, School of Chemical Engineering, tutor: GUO Xuhong 2002/09-2006/07 Bachelor, East China University of Science and Technology, Polymer Materials Science and Engineering, tutor: XU Shilai |
Selected Publications Wang Z, Chen K*, Hua C, et al. Conformation variation and tunable protein adsorption through combination of poly(acrylic acid) and antifouling poly(N -(2-hydroxyethyl) acrylamide) diblock on a particle surface[J]. Polymers. 2020, 12(3): 566. Wang Q, Chen K*, Qu Y, et al. Hairy fluorescent nanospheres based on polyelectrolyte brush for highly sensitive determination of Cu(II)[J]. Polymers. 2020, 12(3): 577. Hua C, Chen K*, Wang Z, et al. Preparation, stability and film properties of cationic polyacrylate latex particles with various substituents on the nitrogen atom[J]. Progress in Organic Coatings. 2020, 143: 105628. Zhang Y, Chen K*, Cao L, et al. Stabilization of Pickering emulsions by hairy nanoparticles bearing polyanions[J]. Polymers. 2019, 11(5): 816. Li K, Chen K*, Wang Q, et al. Synthesis of poly(acrylic acid) coated magnetic nanospheres via a multiple polymerization route[J]. Royal Society Open Science. 2019, 6: 190141. Chen K, Wang S, Guo X. Confinement effect on the aqueous behaviors of free poly(acrylic acid) and poly(acrylic acid) grafted on a nanoparticle surface[J]. Colloid and Polymer Science. 2019, 297(9): 1223-1231. Cao L, Chen K*, Qin X, et al. Effect of block sequence on responsive behavior of core-shell diblock polymer brushes[J]. Materials Letters. 2018, 223(13): 116-119. Chen K, Cao L, Zhang Y, et al. Conformation study of dual stimuli-responsive core-shell diblock polymer brushes[J]. Polymers. 2018, 10(10): 1084. Chen K, Hu F, Gu H, et al. Tuning of surface protein adsorption by spherical mixed charged silica brushes (MCB) with zwitterionic carboxybetaine component[J]. Journal of Materials Chemistry B. 2017, 5(3): 435-443. Qin X, Chen K*, Cao L, et al. Antifouling performance of nano-sized spherical poly(N-hydroxyethyl acrylamide) brush[J]. Colloids and Surfaces B. 2017, 155(7): 408-414. Yu X, Huang S, Chen K*, et al. Preparation of functional Janus particles with response to magnetic force[J]. Industrial & Engineering Chemistry Research. 2015, 54(10): 2690-2696. Chen K, Rana S, Moyano D F, et al. Optimizing the selective recognition of protein isoforms through tuning of nanoparticle hydrophobicity[J]. Nanoscale. 2014, 6(12): 6492-6495. Wang S, Chen K, Li L, et al. Binding between Proteins and Cationic Spherical Polyelectrolyte Brushes: Effect of pH, Ionic Strength, and Stoichiometry[J]. Biomacromolecules. 2013, 14(3): 818-827. Wang S, Chen K, Kayitmazer A B, et al. Tunable adsorption of bovine serum albumin by annealed cationic spherical polyelectrolyte brushes[J]. Colloids and Surfaces B. 2013, 107: 251-256. Zhu Y, Chen K, Wang X, et al. Spherical polyelectrolyte brushes as a nanoreactor for synthesis of ultrafine magnetic nanoparticles[J]. Nanotechnology. 2012, 23(26560126): 265601. Chen K, Zhu Y, Zhang Y, et al. Synthesis of magnetic spherical polyelectrolyte brushes[J]. Macromolecules. 2011, 44(3): 632-639. Chen K, Xu Y, Rana S, et al. Electrostatic selectivity in protein-nanoparticle interactions[J]. Biomacromolecules. 2011, 12(7): 2552-2561. Chen K, Zhu Y, Li L, et al. Recyclable spherical polyelectrolyte brushes containing magnetic nanoparticles in core[J]. Macromolecular Rapid Communications. 2010, 31(16): 1440-1443.
|